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SUMMARY

An underwater towed sound generator, used in sonar research work, was found to be
unstable when under tow. This document records wind tunnel tests carried out on a
model of the towed vehicle. Investigations were concerned mainly with static stability
characteristics and the effectiveness of various configurational changes in improving the
stability of the vehicle. The reasons for the original instability are identified and
proposals are presented for some minimal effort modifications to the vehicle to achieve
satisfactory towed stability.
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1. INTRODUCTION

The underwater towed sound generator referred to in this document was designed
for use in research on sonar detection systems. It is towed behind a small
ship at various speeds and depths and emits a powerful low frequency sound
simulating certain submarine noise frequencies. In earlier versions the
generator had behaved acceptably under tow, but a design change, incorporating
additional equipment into the towed assembly, had resulted in seriously
unstable behaviour.

In consultations with Aerodynamic Research Group a likely reason for the
unstable behaviour was identified and suggestions advanced for corrective
measures. The wind tunnel tests reported here were then carried out to
measure the fluid dynamic characteristics of the existing shape and to assess
the effectiveness of selected modifications intended to improve the towing
stability.

2. EXPERIMENTAL DETAILS

2.1 Experimental equipment

The wind tunnel models used are shown in figure 1, where the dimensions
refer to the models, made to a scale of 1/10 relative to the full size
vehicle. The actual vehicle consists of a nose section followed by a
pressure compensation system, the sound source and then a group of air
bottles, all supported by an external strongback and enclosed within a
cylindrical fibreglass sheath. The strongback contains a row of holes
(shown in figure lc) which allow for the attachment of the towline at a
wide range of axial positions. The geometry of the wind tunnel models
duplicates the actual vehicle in all critical dimensions, but lacks some
detail in that several small bolt heads, slots and access holes are not
modelled. Because of the bluff nature of this shape these omissions were
not expected to cause any serious errors in the results.

The derivation of the somewhat unusual tail designs shown in figure 1 stems
from practical constraints on the design and operation of the actual
vehicle. To satisfy these constraints the tail designs have to:

i) produce sufficient pitching moment to make the vehicle statically
stable.

(ii) be simple to manufacture and fit, requiring minimal modification
to the existing body structure.

(iii) allow the use of the existing deck cradle and winch system with
minimal modifications.

(iv) be robust enough to withstand collision with the ship structure
during deployment and recovery operations.

(v) be of minimal hazard to personnel who may fall against -he tail
assembly during normal shipboard operations.

The tail designs shown in figure 1 were deemed to be the must likely to
satisfy all of these constraints.

All the wind tunnel tests were carried out with the model mounted on a six
component strain gauge sting balance in the 360mm x 380mm slotted working
section of the continuous flow wind tunnel S1 at the Defence Science and
Technology Organisation, Salisbury.
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2.2 Experimental procedure

The wind tunnel test procedure followed a standard static force and moment
measurement programme, covering the conditions listed below:

Mach number 0.35

Reynolds number 0.34 x 106 (based on diameter)

Incidence -30' to 300

Sideslip -30* to 30'

3. PRESENTATION AND DISCUSSION OF RESULTS

All results are given in the body fixed axis system shown in figure 2. No
corrections have been included for blockage or wall interference. However,
for this essentially low-lift shape in a slotted working section these errors
should not be significant.

The force and moment data presented in this document are a limited selection
from the full six component data which were measured. The full data are
available and may be obtained by contacting the author.

3.1 Quality of the simulation

The wind tunnel test conditions differ from the full scale conditions in
two possibly significant features.

The full scale conditions are; incompressible flow (ie Mach number
approaching zero) and Reynolds numbers of about 0.4 to 1.1 x 104, as
compared to the test conditions of Mach 0.35 and a Reynolds number of
0.34 x 10'.

For free stream Mach numbers below 0.5 compressibility effects are
generally small and a good approximation can be calculated from the
Prandtl-Glauert Rule which states that:

C = C xM(l-M2 )x(M=O) I

where, M = Mach number

C = aerodynamic coefficient at Mach number of MxM

C = aerodynamic coefficient at Mach number of 0
x (M=O)

Results given in this report have therefore been corrected for
compressibility effects by the application of this factor (which for
Mach 0.35 evaluates to 0.937).

To determine the effect of Reynolds number on the measured results a
limited series of tests was carried out over a range of Reynolds numbers
from 0.08 to 0.43 xlO. Figure 3 shows the magnitude of the variation in
the normal force coefficient, with respect to results obtained at a
Reynolds number of 0.43 xlO. Although the variation is fairly large at low
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Reynolds numbers, figure 3 shows that the rate of variation becomes
considerably less as the Reynolds number increases. Extrapolation of these
curves suggests that results obtained at the normal test Reynolds number of
0.35 x 10' will be representative of full scale conditions, with maximum
errors of no more than about 4 percent.

Taking all sources of error into consideration it is concluded that the
results given here represent a valid model of the characteristics of full
scale vehicles in operational use, with a typical uncertainty level of
about 5%.

3.2 Characteristics of the original unmodified vehicle

Figure 4 shows a selection of results illustrating the stability
characteristics of the original vehicle. The slopes of the pitching and
yawing moment curves (figure 4a and b) show that the vehicle is clearly
unstable in both incidence and sideslip planes. In addition, figure 4c
shows that sideslip excursions produce surprisingly large induced rolling
moments, due to asymmetries in the crossflow over the body caused by the
strongback. The overall conclusion is that the dangerously unstable
behaviour of the full scale vehicle as observed under tow is not
surprising.

3.3 Effect of add-on tail units

Figure 5 shows again the characteristics of the unmodified vehicle, this
time plotted together with the results obtained with the add-on tail units.
Figure 5a, b, c and d show that with either tail the vehicle is statically
stable, tail 3 producing the highest static margin. Stability in the
sideslip plane is clearly the more critical quantity, due to the need to
overcome the destablising yawing moment generated by the strongback.

Note that the results given here assume a reference centre (centre of mass)
which is unchanged from the tail-off to the tail-on configurations, whereas
unless ballast were added to the nose of the vehicle to counterbalance the
tail mass, the centre of mass would actually be further rearward for the
tail-on configurations. With an all-aluminium tail construction this
rearward shift would be about 0.3 calibers for tail 1, and 0.25 calibers
for tails 2 and 3. Even allowing for this shift, all tail configurations
remain stable, although the static margin in the sideslip plane could be
considered marginal for tail 2.

Figure 5e shows that the add-on tail units have a large effect on the
sideslip induced rolling moment, generally reducing its magnitude. The
induced rolling moment peaks rather higher for tail 3 than for either other
tail, but this should not create a problem since under tow sideslip angles
should not reach more than a few degrees.

Figure 5f shows the effect of the tail units on the drag coefficient of the
vehicle. Interestingly, although tail 3 is considerably larger than tail 2
and generates substantially larger stabilising moments, its drag is almost
identical. This is because the cylindrical fins of tail 3 are of thinner
material than those of tail 2, thus reducing the pressure drag component,
which is the dominant drag producing mechanism for these non-streamlined
tail shapes.

3.4 Effect of nose shape variation

Figure 6 summarises the effect of the flat nose on the fluid dynamic
characteristics of the vehicle with tail I attached. Figure 6a and b shows
that the flat nose produces only very small changes in the incidence and
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sideslip plane stability. These changes generally reduce stability at low
attitudes and are therefore not desirable.

The only significant effect of the flat nose shape is to produce a large
increase in drag. Figure 6c shows that the flat nose produces a drag
increment of about 50% over the original nose.

3.5 Effect of the strongback

Figure 7 compares results from tests with no strongback, the cut-down
strongback and the full strongback, all with tail 1. Figure 7a, b and c
shows that the strongback has very little effect on the incidence plane
stability, but does significantly reduce the sideslip plane stability.
Removal of the forward portion of the strongback produces a marked
improvement but still falls short of the stability level with no
strongback.

Figure 7d shows that the strongback is the cause of the induced rolling
moment coefficents, and that removal of the forward portion of the
strongback produces a slight reduction in these rolling moments.

Figure 7e shows the contribution of the strongback to the drag coefficient
of the vehicle.

3.6 Characteristics of the best performers

'Best' is here taken to mean the most stable two configurations, which
consist of the original nose and body with the cut-down strongback and
either tail 1 or tail 3. Figure 8 summarises the characteristics of these
two configurations. Generally there is little to choose between them but
tail 3 does appear to offer slightly greater stability and lower drag.

4. CONCLUDING REMARKS

(1) The original unmodified vehicle is shown to be statically unstable in
both incidence and sideslip planes, and to exhibit significant
sideslip irluced rolling moments.

(2) Any of the three add-on tail units described here should make the
vehicle statically stable. Tails 1 and 3 exhibit very similar
characteristics and both perform significantly better than tail 2.

(3) The use of a flat nose shape produces no measurable gain in stability,
its only significant effect being a large increase in drag.

(4) The external strongback is shown to be a generally undesirable fluid
dynamic feature. Its major effects are to significantly reduce
stability in the sideslip plane and to generate some unusual induced
rolling moments. By removing the forward portion of the strongback
these undesirable effects can be reduced but not removed. With an
appropriate tail unit attached, however, these effects should not be a
problem.

(5) A recommended vehicle configuration would consist of the original
nose, the cut-down strongback, and either tail I or tail 3.
Performance with either tail is similar, but tail 3 appears to be
slightly superior.
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FIGURE 1: WIND TUNNEL MODELS
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FIGURE 1. CONT'D: WIND TUNNEL MODELS
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FIGURE 4. CHARACTERISTICS OF THE ORIGINAL VEHICLE,
CONFIGURATION IS BODY + ORIGINAL NOSE + STRONGBACK
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FIGURE 4. CONT'D: CHARACTERISTICS OF THE ORIGINAL VEHICLE,
CONFIGURATION IS BODY + ORIGINAL NOSE + STRONGBACK
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FIGURE 5. EFFECT OF ADD-ON TAIL UNITS
CONFIGURATION IS BODY + ORIGINAL NOSE + STRONGBACK



rl ) TAIL

fl TAIL 1

A TAIL

- TAIL 3

.2

C.

-_ .. ..

Incidence (Deg.)

b) Centre of pressure of normal force

FIGURE 5. CONT'D: EFFECT OF ADD-ON TAIL UNITS
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FIGURE 5. CONT'D: EFFECT OF ADD-ON TAIL UNITS
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